Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 87
1.
Sci Total Environ ; 926: 171808, 2024 May 20.
Article En | MEDLINE | ID: mdl-38508273

Enteric methane (CH4) produced by ruminant livestock is a potent greenhouse gas and represents significant energy loss for the animal. The novel application of oxidising compounds as antimethanogenic agents with future potential to be included in ruminant feeds, was assessed across two separate experiments in this study. Low concentrations of oxidising agents, namely urea hydrogen peroxide (UHP) with and without potassium iodide (KI), and magnesium peroxide (MgO2), were investigated for their effects on CH4 production, total gas production (TGP), volatile fatty acid (VFA) profiles, and nutrient disappearance in vitro using the rumen simulation technique. In both experiments, the in vitro diet consisted of 50:50 grass silage:concentrate on a dry matter basis. Treatment concentrations were based on the amount of oxygen delivered and expressed in terms of fold concentration. In Experiment 1, four treatments were tested (Control, 1× UHP + KI, 1× UHP, and 0.5× UHP + KI), and six treatments were assessed in Experiment 2 (Control, 0.5× UHP + KI, 0.5× UHP, 0.25× UHP + KI, 0.25× UHP, and 0.12× MgO2). All treatments in this study had a reducing effect on CH4 parameters. A dose-dependent reduction of TGP and CH4 parameters was observed, where treatments delivering higher levels of oxygen resulted in greater CH4 suppression. 1× UHP + KI reduced TGP by 28 % (p = 0.611), CH4% by 64 % (p = 0.075) and CH4 mmol/g digestible organic matter by 71 % (p = 0.037). 0.12× MgO2 reduced CH4 volume by 25 % (p > 0.05) without affecting any other parameters. Acetate-to-propionate ratios were reduced by treatments in both experiments (p < 0.01). Molar proportions of acetate and butyrate were reduced, while propionate and valerate were increased in UHP treatments. High concentrations of UHP affected the degradation of neutral detergent fibre in the forage substrate. Future in vitro work should investigate alternative slow-release oxygen sources aimed at prolonging CH4 suppression.


Propionates , Rumen , Animals , Female , Propionates/metabolism , Methane/metabolism , Magnesium Oxide/metabolism , Diet , Silage/analysis , Ruminants , Acetates/metabolism , Oxygen/metabolism , Animal Feed/analysis , Fermentation , Digestion , Lactation
2.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38206107

Research into the potential use of various dietary feed supplements to reduce methane (CH4) production from ruminants has proliferated in recent years. In this study, two 8-wk long experiments were conducted with mature ewes and incorporated the use of a variety of natural dietary feed supplements offered either independently or in combination. Both experiments followed a randomized complete block design. Ewes were offered a basal diet in the form of ad libitum access to grass silage supplemented with 0.5 kg concentrates/ewe/d. The entire daily dietary concentrate allocation, incorporating the respective feed supplement, was offered each morning, and this was followed by the daily silage allocation. In experiment 1, the experimental diets contained 1) no supplementation (CON), 2) Ascophyllum nodosum (SW), 3) A. nodosum extract (EX1), 4) a blend of garlic and citrus extracts (GAR), and 5) a blend of essential oils (EO). In experiment 2, the experimental diets contained 1) no supplementation (CON), 2) A. nodosum extract (EX2), 3) soya oil (SO), and 4) a combination of EX2 and SO (EXSO). Twenty ewes per treatment were individually housed during both experiments. Methane was measured using portable accumulation chambers. Rumen fluid was collected at the end of both experiments for subsequent volatile fatty acid (VFA) and ammonia analyses. Data were analyzed using mixed models ANOVA (PROC MIXED, SAS v9.4). Statistically significant differences between treatment means were considered when P < 0.05. Dry matter intake was not affected by diet in either experiment (P > 0.05). Ewes offered EO tended to have an increased feed:gain ratio relative to CON (P < 0.10) and SO tended to increase the average daily gain (P < 0.10) which resulted in animals having a higher final body weight (P < 0.05) than CON. Ewes offered EX1 and SO emitted 9% less CH4 g/d than CON. The only dietary treatment to have an effect on rumen fermentation variables relative to CON was SW, which enhanced total VFA production (P < 0.05). In conclusion, the A. nodosum extract had inconsistent results on CH4 emissions whereby EX1 reduced CH4 g/d while EX2 had no mitigating effect on CH4 production, likely due to the differences in PT content reported for EX1 and EX2. SO was the only dietary feed supplement assessed in the current study that enhanced animal performance whilst mitigating daily CH4 production.


Reducing methane emissions from agriculture is vital to minimize the effects of global warming and to meet greenhouse gas reduction targets set by EU policy. In this experiment, a range of natural feed supplements were offered to mature ewes through the concentrated portion of their diet. Soya oil and brown seaweed extract reduced daily methane emissions by 9% when offered independently of each other; however, no reduction in methane was observed when combined. Additionally, inclusion of soya oil improved animal weight gain. Results from the current experiment may contribute to the development of a targeted dietary strategy to reduce methane emissions from livestock.


Diet , Methane , Sheep , Animals , Female , Methane/metabolism , Diet/veterinary , Dietary Supplements/analysis , Ruminants , Silage/analysis , Fatty Acids, Volatile/metabolism , Rumen/metabolism , Soybean Oil/metabolism , Plant Extracts , Fermentation , Animal Feed/analysis , Lactation , Digestion
3.
J Anim Sci ; 1022024 Jan 03.
Article En | MEDLINE | ID: mdl-38038711

There is an urgent requirement internationally to reduce enteric methane (CH4) emissions from ruminants to meet greenhouse gas emissions reduction targets. Dietary supplementation with feed additives is one possible strategy under investigation as an effective solution. The effects of the CH4 inhibitor 3-nitrooxypropanol (3-NOP) at reducing CH4 emissions in beef have been shown mainly in adult cattle consuming backgrounding and high-energy finishing diets. In this study, the effects of dietary supplementation of young growing (≤6 mo) beef cattle with 3-NOP were examined in a 50:50 forage:concentrate diet. A total of 68 Dairy × Beef (Aberdeen Angus and Hereford dairy cross) male calves (≤6 mo of age at the start of experiment, body weight: 147 ±â€…38 kg) underwent a 3-wk acclimatization period and were then assigned to one of two treatments in a completely randomized block design. Dietary treatments were (1) control, placebo (no 3-NOP), and (2) 3-NOP applied at 150 mg kg-1 DM. Calves were fed a partial mixed ration for 12 wk. Body weight was recorded weekly and feed intake daily using the Calan Broadbent feeding system. Methane and hydrogen emissions were measured using the GreenFeed system. Total weight gained, dry matter intake (DMI), and average daily gain were not affected by 3-NOP (P > 0.05) supplementation. On average, the inclusion of 3-NOP decreased (P < 0.001) CH4 emissions: g d-1; g kg-1 DMI; by 30.6% and 27.2%, respectively, during the study with a greater reduction occurring over time. Incorporating 3-NOP into beef cattle diets is an efficient solution to decrease CH4 emissions during indoor feeding and when offered 50:50 forage:concentrate diet.


Enteric methane (CH4) is a by-product from the fermentation of feed in the digestive tract of cattle. The production of CH4 is responsible for the loss of 2% to 12% of the animal's gross energy intake. A potent greenhouse gas, CH4 from ruminant systems accounts for 30% of international anthropogenic CH4 emissions. As a result, a significant effort has been made internationally to reduce CH4 emissions from ruminants in order to achieve reductions in global greenhouse gas emissions. The supplementation of additives in the feed has been demonstrated to be an effective strategy in reducing CH4 emitted from livestock. The purpose of this research was to investigate the effects of supplementing young growing cattle with the CH4 inhibitor, 3-nitrooxypropanol (3-NOP), consuming a 50:50 forage:concentrate diet. A total of 68 Dairy × Beef (Aberdeen Angus and Hereford dairy cross) male calves (≤6 mo of age at the start of the experiment) were assigned to one of two treatments: control (no 3-NOP) and 3-NOP. Animals received their diets for 12 wk. Animal performance was recorded weekly, with CH4 and hydrogen (H2) emissions recorded daily. Dry matter intake and animal performance were not affected by the inclusion of 3-NOP. Over the duration of this study, the inclusion of 3-NOP decreased daily CH4 emissions by 30.6%, with a 227% increase in daily H2 emissions.


Animal Feed , Propanols , Rumen , Animals , Cattle , Male , Animal Feed/analysis , Body Weight , Diet/veterinary , Dietary Supplements/analysis , Fermentation , Methane/metabolism , Rumen/metabolism
5.
Sci Rep ; 13(1): 9034, 2023 06 03.
Article En | MEDLINE | ID: mdl-37270611

Improving cattle feed efficiency through selection of residual feed intake (RFI) is a widely accepted approach to sustainable beef production. A greater understanding of the molecular control of RFI in various breeds offered contrasting diets is necessary for the accurate identification of feed efficient animals and will underpin accelerated genetic improvement of the trait. The aim of this study was to determine genes and biological processes contributing to RFI across varying breed type and dietary sources in skeletal muscle tissue. Residual feed intake was calculated in Charolais and Holstein-Friesian steers across multiple dietary phases (phase-1: high concentrate (growing-phase); phase-2: zero-grazed grass (growing-phase); phase-3: high concentrate (finishing-phase). Steers divergent for RFI within each breed and dietary phase were selected for muscle biopsy collection, and muscle samples subsequently subjected to RNAseq analysis. No gene was consistently differentially expressed across the breed and diet types examined. However, pathway analysis revealed commonality across breeds and diets for biological processes including fatty acid metabolism, immune function, energy production and muscle growth. Overall, the lack of commonality of individual genes towards variation in RFI both within the current study and compared to the published literature, suggests other genomic features warrant further evaluation in relation to RFI.


Animal Feed , Transcriptome , Cattle/genetics , Animals , Animal Feed/analysis , Plant Breeding , Eating/genetics , Diet/veterinary
6.
ISME J ; 17(7): 1128-1140, 2023 07.
Article En | MEDLINE | ID: mdl-37169869

Protozoa comprise a major fraction of the microbial biomass in the rumen microbiome, of which the entodiniomorphs (order: Entodiniomorphida) and holotrichs (order: Vestibuliferida) are consistently observed to be dominant across a diverse genetic and geographical range of ruminant hosts. Despite the apparent core role that protozoal species exert, their major biological and metabolic contributions to rumen function remain largely undescribed in vivo. Here, we have leveraged (meta)genome-centric metaproteomes from rumen fluid samples originating from both cattle and goats fed diets with varying inclusion levels of lipids and starch, to detail the specific metabolic niches that protozoa occupy in the context of their microbial co-habitants. Initial proteome estimations via total protein counts and label-free quantification highlight that entodiniomorph species Entodinium and Epidinium as well as the holotrichs Dasytricha and Isotricha comprise an extensive fraction of the total rumen metaproteome. Proteomic detection of protozoal metabolism such as hydrogenases (Dasytricha, Isotricha, Epidinium, Enoploplastron), carbohydrate-active enzymes (Epidinium, Diplodinium, Enoploplastron, Polyplastron), microbial predation (Entodinium) and volatile fatty acid production (Entodinium and Epidinium) was observed at increased levels in high methane-emitting animals. Despite certain protozoal species having well-established reputations for digesting starch, they were unexpectedly less detectable in low methane emitting-animals fed high starch diets, which were instead dominated by propionate/succinate-producing bacterial populations suspected of being resistant to predation irrespective of host. Finally, we reaffirmed our abovementioned observations in geographically independent datasets, thus illuminating the substantial metabolic influence that under-explored eukaryotic populations have in the rumen, with greater implications for both digestion and methane metabolism.


Ciliophora , Rumen , Animals , Cattle , Rumen/microbiology , Proteomics , Ciliophora/genetics , Ciliophora/metabolism , Ruminants/metabolism , Starch/metabolism , Methane/metabolism
8.
Front Genet ; 14: 1092877, 2023.
Article En | MEDLINE | ID: mdl-36873940

Bovine herpesvirus 1 (BoHV-1), is associated with several clinical syndromes in cattle, among which bovine respiratory disease (BRD) is of particular significance. Despite the importance of the disease, there is a lack of information on the molecular response to infection via experimental challenge with BoHV-1. The objective of this study was to investigate the whole-blood transcriptome of dairy calves experimentally challenged with BoHV-1. A secondary objective was to compare the gene expression results between two separate BRD pathogens using data from a similar challenge study with BRSV. Holstein-Friesian calves (mean age (SD) = 149.2 (23.8) days; mean weight (SD) = 174.6 (21.3) kg) were either administered BoHV-1 inoculate (1 × 107/mL × 8.5 mL) (n = 12) or were mock challenged with sterile phosphate buffered saline (n = 6). Clinical signs were recorded daily from day (d) -1 to d 6 (post-challenge), and whole blood was collected in Tempus RNA tubes on d six post-challenge for RNA-sequencing. There were 488 differentially expressed (DE) genes (p < 0.05, False Discovery rate (FDR) < 0.10, fold change ≥2) between the two treatments. Enriched KEGG pathways (p < 0.05, FDR <0.05); included Influenza A, Cytokine-cytokine receptor interaction and NOD-like receptor signalling. Significant gene ontology terms (p < 0.05, FDR <0.05) included defence response to virus and inflammatory response. Genes that are highly DE in key pathways are potential therapeutic targets for the treatment of BoHV-1 infection. A comparison to data from a similar study with BRSV identified both similarities and differences in the immune response to differing BRD pathogens.

9.
Sci Rep ; 13(1): 3336, 2023 02 27.
Article En | MEDLINE | ID: mdl-36849493

While the breed of cattle can impact on the composition and structure of microbial communities in the rumen, breed-specific effects on rumen microbial communities have rarely been examined in sheep. In addition, rumen microbial composition can differ between ruminal fractions, and be associated with ruminant feed efficiency and methane emissions. In this study, 16S rRNA amplicon sequencing was used to investigate the effects of breed and ruminal fraction on bacterial and archaeal communities in sheep. Solid, liquid and epithelial rumen samples were obtained from a total of 36 lambs, across 4 different sheep breeds (Cheviot (n = 10), Connemara (n = 6), Lanark (n = 10) and Perth (n = 10)), undergoing detailed measurements of feed efficiency, who were offered a nut based cereal diet ad-libitum supplemented with grass silage. Our results demonstrate that the feed conversion ratio (FCR) was lowest for the Cheviot (most efficient), and highest for the Connemara breed (least efficient). In the solid fraction, bacterial community richness was lowest in the Cheviot breed, while Sharpea azabuensis was most abundant in the Perth breed. Lanark, Cheviot and Perth breeds exhibited a significantly higher abundance of epithelial associated Succiniclasticum compared to the Connemara breed. When comparing ruminal fractions, Campylobacter, Family XIII, Mogibacterium, and Lachnospiraceae UCG-008 were most abundant in the epithelial fraction. Our findings indicate that breed can impact the abundance of specific bacterial taxa in sheep while having little effect on the overall composition of the microbial community. This finding has implications for genetic selection breeding programs aimed at improving feed conversion efficiency of sheep. Furthermore, the variations in the distribution of bacterial species identified between ruminal fractions, notably between solid and epithelial fractions, reveals a rumen fraction bias, which has implications for sheep rumen sampling techniques.


Archaea , Campylobacter , Sheep , Animals , Cattle , Archaea/genetics , RNA, Ribosomal, 16S/genetics , Plant Breeding , Veillonellaceae , Clostridiales
10.
Nat Commun ; 13(1): 6240, 2022 10 20.
Article En | MEDLINE | ID: mdl-36266280

Quinella is a genus of iconic rumen bacteria first reported in 1913. There are no cultures of these bacteria, and information on their physiology is scarce and contradictory. Increased abundance of Quinella was previously found in the rumens of some sheep that emit low amounts of methane (CH4) relative to their feed intake, but whether Quinella contributes to low CH4 emissions is not known. Here, we concentrate Quinella cells from sheep rumen contents, extract and sequence DNA, and reconstruct Quinella genomes that are >90% complete with as little as 0.20% contamination. Bioinformatic analyses of the encoded proteins indicate that lactate and propionate formation are major fermentation pathways. The presence of a gene encoding a potential uptake hydrogenase suggests that Quinella might be able to use free hydrogen (H2). None of the inferred metabolic pathways is predicted to produce H2, a major precursor of CH4, which is consistent with the lower CH4 emissions from those sheep with high abundances of this bacterium.


Propionates , Rumen , Sheep , Animals , Rumen/microbiology , Propionates/metabolism , Bacteria/genetics , Methane/metabolism , Fermentation , Hydrogen/metabolism , Veillonellaceae , Genomics , Lactates/metabolism , Diet/veterinary
11.
Viruses ; 14(9)2022 08 24.
Article En | MEDLINE | ID: mdl-36146668

Bovine respiratory disease (BRD), which is the leading cause of morbidity and mortality in cattle, is caused by numerous known and unknown viruses and is responsible for the widespread use of broad-spectrum antibiotics despite the use of polymicrobial BRD vaccines. Viral metagenomics sequencing on the portable, inexpensive Oxford Nanopore Technologies MinION sequencer and sequence analysis with its associated user-friendly point-and-click Epi2ME cloud-based pathogen identification software has the potential for point-of-care/same-day/sample-to-result metagenomic sequence diagnostics of known and unknown BRD pathogens to inform a rapid response and vaccine design. We assessed this potential using in vitro viral cell cultures and nasal swabs taken from calves that were experimentally challenged with a single known BRD-associated DNA virus, namely, bovine herpes virus 1. Extensive optimisation of the standard Oxford Nanopore library preparation protocols, particularly a reduction in the PCR bias of library amplification, was required before BoHV-1 could be identified as the main virus in the in vitro cell cultures and nasal swab samples within approximately 7 h from sample to result. In addition, we observed incorrect assignment of the bovine sequence to bacterial and viral taxa due to the presence of poor-quality bacterial and viral genome assemblies in the RefSeq database used by the EpiME Fastq WIMP pathogen identification software.


Cattle Diseases , Herpesvirus 1, Bovine , Nanopores , Viruses , Animals , Anti-Bacterial Agents , Cattle , Genomics , Herpesvirus 1, Bovine/genetics , Metagenomics/methods , Viruses/genetics
12.
Sci Total Environ ; 850: 158070, 2022 Dec 01.
Article En | MEDLINE | ID: mdl-35981583

Nitrous oxide (N2O) is a potent greenhouse gas (GHG) whose emission from soil can be enhanced by ruminant excretal returns in grasslands. The default (Tier 1) emission factors (EF3PRP; i.e. proportion of deposited nitrogen emitted as N2O) for ruminant excreta deposition are associated with a wide range of uncertainties and the development of country-specific (Tier 2) EF3PRP is encouraged. In Ireland, a Tier 2 EF3PRP has been developed for cattle excreta but no data are available for sheep. The aim of this study was to generate data to contribute to the derivation of a Tier 2 EF3PRP for sheep excreta, while assessing the effect of excreta type, grassland type and season of deposition on N2O emissions. An experiment was carried out on two sites in the west of Ireland: a managed lowland grassland (LOW) and an extensively grazed hill pasture (HILL), characterised by mineral and acid peat soils, respectively. For each season, four treatments were applied to the soil in a fully randomized block design: control (C), sheep urine (U), sheep dung (D), and artificial urine (AU). Nitrous oxide fluxes were assessed over a full year following each application of treatments, using a static chambers methodology. Results showed a brief initial peak following each application of U/AU in LOW but not in HILL. Cumulative N2O emissions were significantly higher from the lowland site. Average EF3PRP for combined excreta was negligible on both sites, thus lower than the IPCC Tier 1 EF3PRP. Causes of low emissions are likely to depend on site characteristics (e.g. soil acidity in HILL) and season of application (i.e. ammonia volatilisation in summer). This study showed very low N2O emissions from sheep excretal returns in Irish grasslands and highlighted the importance of developing Tier 2, animal-specific EF3PRP. More experimental grasslands should be assessed to confirm these results.


Greenhouse Gases , Nitrous Oxide , Ammonia/analysis , Animals , Cattle , Grassland , Nitrogen , Nitrous Oxide/analysis , Sheep , Soil
13.
Anim Nutr ; 10: 216-222, 2022 Sep.
Article En | MEDLINE | ID: mdl-35785258

Urea nitrogen secreted from blood to rumen is a crucial factor shaping the symbiotic relationship between host ruminants and their microbial populations. Passage of urea across rumen epithelia is facilitated by urea transporter B (UT-B), but the long-term regulation of these proteins remains unclear. As ruminal function develops over a period of months, the developing rumen is an excellent model with which to investigate this regulation. Using rumen epithelium samples of calves from birth to 96 d of age, this study performed immunolocalization studies to localize and semi-quantify UT-B protein development. As expected, preliminary experiments confirmed that ruminal monocarboxylate transporter 1 (MCT1) short chain fatty acid transporter protein abundance increased with age (P < 0.01, n = 4). Further investigation revealed that ruminal UT-B was present in the first few weeks of life and initially detected in the basolateral membrane of stratum basale cells. Over the next 2 months, UT-B staining spread to other epithelial layers and semi-quantification indicated that UT-B abundance significantly increased with age (P < 0.01, n = 4 or 6). These changes were in line with the development of rumen function after the advent of solid feed intake and weaning, exhibiting a similar pattern to both MCT1 transporters and papillae growth. This study therefore confirmed age-dependent changes of in situ ruminal UT-B protein, adding to our understanding of the long-term regulation of ruminal urea transporters.

14.
Front Microbiol ; 13: 855565, 2022.
Article En | MEDLINE | ID: mdl-35572638

With the advent of high throughput technology, it is now feasible to study the complex relationship of the rumen microbiota with methanogenesis in large populations of ruminant livestock divergently ranked for enteric emissions. Recently, the residual methane emissions (RME) concept has been identified as the optimal phenotype for assessing the methanogenic potential of ruminant livestock due to the trait's independence from animal productivity but strong correlation with daily methane emissions. However, there is currently a dearth of data available on the bacterial and archaeal microbial communities residing in the rumens of animals divergently ranked for RME. Therefore, the objective of this study was to investigate the relationship between the rumen microbiota and RME in a population of finishing beef cattle. Methane emissions were estimated from individual animals using the GreenFeed Emissions Monitoring system for 21 days over a mean feed intake measurement period of 91 days. Residual methane emissions were calculated for 282 crossbred finishing beef cattle, following which a ∼30% difference in all expressions of methane emissions was observed between high and low RME ranked animals. Rumen fluid samples were successfully obtained from 268 animals during the final week of the methane measurement period using a trans-oesophageal sampling device. Rumen microbial DNA was extracted and subjected to 16S rRNA amplicon sequencing. Animals ranked as low RME had the highest relative abundances (P < 0.05) of lactic-acid-producing bacteria (Intestinibaculum, Sharpea, and Olsenella) and Selenomonas, and the lowest (P < 0.05) proportions of Pseudobutyrivibrio, Butyrivibrio, and Mogibacterium. Within the rumen methanogen community, an increased abundance (P < 0.05) of the genus Methanosphaera and Methanobrevibacter RO clade was observed in low RME animals. The relative abundances of both Intestinibaculum and Olsenella were negatively correlated (P < 0.05) with RME and positively correlated with ruminal propionate. A similar relationship was observed for the abundance of Methanosphaera and the Methanobrevibacter RO clade. Findings from this study highlight the ruminal abundance of bacterial genera associated with the synthesis of propionate via the acrylate pathway, as well as the methanogens Methanosphaera and members of the Methanobrevibacter RO clade as potential microbial biomarkers of the methanogenic potential of beef cattle.

15.
Sci Total Environ ; 803: 149935, 2022 Jan 10.
Article En | MEDLINE | ID: mdl-34487900

Excreta deposition onto pasture, range and paddocks (PRP) by grazing ruminant constitute a source of nitrous oxide (N2O), a potent greenhouse gas (GHG). These emissions must be reported in national GHG inventories, and their estimation is based on the application of an emission factor, EF3PRP (proportion of nitrogen (N) deposited to the soil through ruminant excreta, which is emitted as N2O). Depending on local data available, countries use various EF3PRPs and approaches to estimate N2O emissions from grazing ruminant excreta. Based on ten case study countries, this review aims to highlight the uncertainties around the methods used to account for these emissions in their national GHG inventories, and to discuss the efforts undertaken for considering factors of variation in the calculation of emissions. Without any local experimental data, 2006 the IPCC default (Tier 1) EF3PRPs are still widely applied although the default values were revised in 2019. Some countries have developed country-specific (Tier 2) EF3PRP based on local field studies. The accuracy of estimation can be improved through the disaggregation of EF3PRP or the application of models; two approaches including factors of variation. While a disaggregation of EF3PRP by excreta type is already well adopted, a disaggregation by other factors such as season of excreta deposition is more difficult to implement. Empirical models are a potential method of considering factors of variation in the establishment of EF3PRP. Disaggregation and modelling requires availability of sufficient experimental and activity data, hence why only few countries have currently adopted such approaches. Replication of field studies under various conditions, combined with meta-analysis of experimental data, can help in the exploration of influencing factors, as long as appropriate metadata is recorded. Overall, despite standard IPCC methodologies for calculating GHG emissions, large uncertainties and differences between individual countries' accounting remain to be addressed.


Greenhouse Gases , Animals , Greenhouse Gases/analysis , Nitrous Oxide/analysis , Ruminants , Seasons , Soil
16.
Front Vet Sci ; 9: 958340, 2022.
Article En | MEDLINE | ID: mdl-36619952

Ruminant livestock play a key role in global society through the conversion of lignocellulolytic plant matter into high-quality sources of protein for human consumption. However, as a consequence of the digestive physiology of ruminant species, methane (CH4), which originates as a byproduct of enteric fermentation, is accountable for 40% of global agriculture's carbon footprint and ~6% of global greenhouse gas (GHG) emissions. Therefore, meeting the increasing demand for animal protein associated with a growing global population while reducing the GHG intensity of ruminant production will be a challenge for both the livestock industry and the research community. In recent decades, numerous strategies have been identified as having the potential to reduce the methanogenic output of livestock. Dietary supplementation with antimethanogenic compounds, targeting members of the rumen methanogen community and/or suppressing the availability of methanogenesis substrates (mainly H2 and CO2), may have the potential to reduce the methanogenic output of housed livestock. However, reducing the environmental impact of pasture-based beef cattle may be a challenge, but it can be achieved by enhancing the nutritional quality of grazed forage in an effort to improve animal growth rates and ultimately reduce lifetime emissions. In addition, the genetic selection of low-CH4-emitting and/or faster-growing animals will likely benefit all beef cattle production systems by reducing the methanogenic potential of future generations of livestock. Similarly, the development of other mitigation technologies requiring minimal intervention and labor for their application, such as anti-methanogen vaccines, would likely appeal to livestock producers, with high uptake among farmers if proven effective. Therefore, the objective of this review is to give a detailed overview of the CH4 mitigation solutions, both currently available and under development, for temperate pasture-based beef cattle production systems. A description of ruminal methanogenesis and the technologies used to estimate enteric emissions at pastures are also presented.

17.
J Anim Sci ; 99(11)2021 Nov 01.
Article En | MEDLINE | ID: mdl-34598276

Residual expressions of enteric emissions favor a more equitable identification of an animal's methanogenic potential compared with traditional measures of enteric emissions. The objective of this study was to investigate the effect of divergently ranking beef cattle for residual methane emissions (RME) on animal productivity, enteric emissions, and rumen fermentation. Dry matter intake (DMI), growth, feed efficiency, carcass output, and enteric emissions (GreenFeed emissions monitoring system) were recorded on 294 crossbred beef cattle (steers = 135 and heifers = 159; mean age 441 d (SD = 49); initial body weight (BW) of 476 kg (SD = 67)) at the Irish national beef cattle performance test center. Animals were offered a total mixed ration (77% concentrate and 23% forage; 12.6 MJ ME/kg of DM and 12% CP) ad libitum with emissions estimated for 21 d over a mean feed intake measurement period of 91 d. Animals had a mean daily methane emissions (DME) of 229.18 g/d (SD = 45.96), methane yield (MY) of 22.07 g/kg of DMI (SD = 4.06), methane intensity (MI) 0.70 g/kg of carcass weight (SD = 0.15), and RME 0.00 g/d (SD = 0.34). RME was computed as the residuals from a multiple regression model regressing DME on DMI and BW (R2 = 0.45). Animals were ranked into three groups namely high RME (>0.5 SD above the mean), medium RME (±0.5 SD above/below the mean), and low RME (>0.5 SD below the mean). Low RME animals produced 17.6% and 30.4% less (P < 0.05) DME compared with medium and high RME animals, respectively. A ~30% reduction in MY and MI was detected in low versus high RME animals. Positive correlations were apparent among all methane traits with RME most highly associated with (r = 0.86) DME. MY and MI were correlated (P < 0.05) with DMI, growth, feed efficiency, and carcass output. High RME had lower (P < 0.05) ruminal propionate compared with low RME animals and increased (P < 0.05) butyrate compared with medium and low RME animals. Propionate was negatively associated (P < 0.05) with all methane traits. Greater acetate:propionate ratio was associated with higher RME (r = 0.18; P < 0.05). Under the ad libitum feeding regime deployed here, RME was the best predictor of DME and only methane trait independent of animal productivity. Ranking animals on RME presents the opportunity to exploit interanimal variation in enteric emissions as well as providing a more equitable index of the methanogenic potential of an animal on which to investigate the underlying biological regulatory mechanisms.


Methane , Rumen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Eating , Female , Fermentation , Methane/metabolism , Rumen/metabolism
18.
J Anim Sci ; 99(10)2021 Oct 01.
Article En | MEDLINE | ID: mdl-34586400

Ruminant supply chains contribute 5.7 gigatons of CO2-eq per annum, which represents approximately 80% of the livestock sector emissions. One of the largest sources of emission in the ruminant sector is methane (CH4), accounting for approximately 40% of the sectors total emissions. With climate change being a growing concern, emphasis is being put on reducing greenhouse gas emissions, including those from ruminant production. Various genetic and environmental factors influence cattle CH4 production, such as breed, genetic makeup, diet, management practices, and physiological status of the host. The influence of genetic variability on CH4 yield in ruminants indicates that genomic selection for reduced CH4 emissions is possible. Although the microbiology of CH4 production has been studied, further research is needed to identify key differences in the host and microbiome genomes and how they interact with one another. The advancement of "-omics" technologies, such as metabolomics and metagenomics, may provide valuable information in this regard. Improved understanding of genetic mechanisms associated with CH4 production and the interaction between the microbiome profile and host genetics will increase the rate of genetic progress for reduced CH4 emissions. Through a systems biology approach, various "-omics" technologies can be combined to unravel genomic regions and genetic markers associated with CH4 production, which can then be used in selective breeding programs. This comprehensive review discusses current challenges in applying genomic selection for reduced CH4 emissions, and the potential for "-omics" technologies, especially metabolomics and metagenomics, to minimize such challenges. The integration and evaluation of different levels of biological information using a systems biology approach is also discussed, which can assist in understanding the underlying genetic mechanisms and biology of CH4 production traits in ruminants and aid in reducing agriculture's overall environmental footprint.


Greenhouse Gases , Methane , Animals , Cattle/genetics , Metabolomics , Metagenomics , Methane/analysis , Ruminants/genetics
19.
Front Genet ; 12: 633125, 2021.
Article En | MEDLINE | ID: mdl-33968129

Bovine respiratory disease (BRD) causes substantial morbidity and mortality, affecting cattle of all ages. One of the main causes of BRD is an initial inflammatory response to bovine respiratory syncytial virus (BRSV). MicroRNAs are novel and emerging non-coding small RNAs that regulate many biological processes and are implicated in various inflammatory diseases. The objective of the present study was to elucidate the changes in the bovine bronchial lymph node miRNA transcriptome in response to BRSV following an experimental viral challenge. Holstein-Friesian calves were either administered a challenge dose of BRSV (103.5 TCID50/ml × 15 ml) (n = 12) or were mock inoculated with sterile phosphate buffered saline (n = 6). Daily scoring of clinical signs was performed and calves were euthanized at day 7 post-challenge. Bronchial lymph nodes were collected for subsequent RNA extraction and sequencing (75 bp). Read counts for known miRNAs were generated using the miRDeep2 package using the UMD3.1 reference genome and the bovine mature miRNA sequences from the miRBase database (release 22). EdgeR was used for differential expression analysis and Targetscan was used to identify target genes for the differentially expressed (DE) miRNAs. Target genes were examined for enriched pathways and gene ontologies using Ingenuity Pathway Analysis (Qiagen). Multi-dimensional scaling (MDS) based on miRNA gene expression changes, revealed a clearly defined separation between the BRSV challenged and control calves, although the clinical manifestation of disease was only mild. One hundred and nineteen DE miRNAs (P < 0.05, FDR < 0.1, fold change > 1.5) were detected between the BRSV challenged and control calves. The DE miRNAs were predicted to target 465 genes which were previously found to be DE in bronchial lymph node tissue, between these BRSV challenged and control calves. Of the DE predicted target genes, 455 had fold changes that were inverse to the corresponding DE miRNAs. There were eight enriched pathways among the DE predicted target genes with inverse fold changes to their corresponding DE miRNA including: granulocyte and agranulocyte adhesion and diapedesis, interferon signalling and role of pathogen recognition receptors in recognition of bacteria and viruses. Functions predicted to be increased included: T cell response, apoptosis of leukocytes, immune response of cells and stimulation of cells. Pathogen recognition and proliferation of cytotoxic T cells are vital for the recognition of the virus and its subsequent elimination.

20.
Sci Rep ; 11(1): 9392, 2021 04 30.
Article En | MEDLINE | ID: mdl-33931718

Bovine Respiratory Syncytial Virus (BRSV) is a primary viral cause of Bovine Respiratory Disease (BRD) in young calves, which is responsible for substantial morbidity and mortality. Infection with BRSV induces global gene expression changes in respiratory tissues. If these changes are observed in tissues which are more accessible in live animals, such as whole blood, they may be used as biomarkers for diagnosis of the disease. Therefore, the objective of the current study was to elucidate the whole blood transcriptomic response of dairy calves to an experimental challenge with BRSV. Calves (Holstein-Friesian) were either administered BRSV inoculate (103.5 TCID50/ml × 15 ml) (n = 12) or sterile phosphate buffered saline (n = 6). Clinical signs were scored daily and whole blood was collected in Tempus RNA tubes immediately prior to euthanasia, at day 7 post-challenge. RNA was extracted from blood and sequenced (150 bp paired-end). The sequence reads were aligned to the bovine reference genome (UMD3.1) and EdgeR was subsequently employed for differential gene expression analysis. Multidimensional scaling showed that samples from BRSV challenged and control calves segregated based on whole blood gene expression changes, despite the BRSV challenged calves only displaying mild clinical symptoms of the disease. There were 281 differentially expressed (DE) genes (p < 0.05, FDR < 0.1, fold change > 2) between the BRSV challenged and control calves. The top enriched KEGG pathways and gene ontology terms were associated with viral infection and included "Influenza A", "defense response to virus", "regulation of viral life cycle" and "innate immune response". Highly DE genes involved in these pathways may be beneficial for the diagnosis of subclinical BRD from blood samples.


Biomarkers/blood , Cattle Diseases/diagnosis , Gene Expression Regulation , RNA, Messenger/genetics , Respiratory Syncytial Virus Infections/veterinary , Respiratory Syncytial Virus, Bovine/genetics , Animals , Cattle , Cattle Diseases/blood , Cattle Diseases/genetics , Cattle Diseases/virology , RNA, Messenger/blood , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/genetics , Respiratory Syncytial Virus Infections/virology , Transcriptome
...